
TEMPLATE NUMERICAL TOOLKIT FOR LINEAR ALGEBRA: HIGH

PERFORMANCE PROGRAMMING WITH C++ AND THE

STANDARD TEMPLATE LIBRARY

ROLDAN POZO �

Abstract. We present a new C++ library design for linear algebra computations on high

performance architectures. The Template Numerical Toolkit (TNT) for Linear Algebra is a successor

to the Lapack++, Sparselib++, and IML++ packages, providing support for direct and iterative

solvers. Its goal is to formally integrate these ideas into a generic algorithm library supporting user-

de�ned data types and data neutrality. The design of the core library utilizes components from the

C++ Standard Template Library (STL) and the basic parallel extensions de�ned in HPC++.

1. Introduction. The Template Numerical Toolkit (TNT) for linear algebra is a successor to the

Lapack++ [6], Sparselib++ [13], IML++ [5], and MV++ [12] packages. Its goal is to formally integrate

these ideas into a generic algorithmic library, supporting user-de�ned data types, and increasing its

functionality. The toolkit provides an integrated collection of generic matrix/vector classes based on

components of the Standard Template Library (STL), together with specialization of generic algorithms

for maximal e�ciency. The TNT project is under development; this paper provides a look at the work

in progress. Here we focus on issues of sparse matrices and iterative methods for the solution of linear

systems.

The fundamental goal in TNT is to be able to express numerical algorithms independent of the

speci�c matrix or vector implementation. For example, the same generic algorithm for a conjugate

gradient algorithm can work for single-precision dense matrix, or various double-precision sparse matrix

schemes. This is accomplished using consistent interfaces and template functions in C++.

Parallelism in TNT can be expressed in three ways: (1) utilizing threads for the Basic Linear

Algebra Subprogram (BLAS) calls, (2) utilizing a shared-memory version of STL, as prescribed in

HPC++[9], and (3) utilizing distributed vectors in a SPMD setting. This paper focuses on the �rst

two methods. This type of SMP parallelism is not aimed at massively parallel architectures with

thousands of processors, but is much more practical to integrate with existing application codes.

Another important aspect of the toolkit is that it provides di�erent implementation choices for

the basic linear algebra structures. For example, it supports four di�erent variations of sparse vec-

tors: a linked-list implementation (providing O(1) insertion, O(N) random-access cost), a vector-based

implementation (providing fast random-access, but O(N) insertion cost), an associative-table imple-

mentation (providing e�cient iteration mechanism, O(1) insertion cost, and O(log N) random-access

cost), and a Fortran-compatible implementation (providing compatible data structures for external

libraries and application codes). Furthermore, several standard sparse matrix storage schemes are

supported, providing the application programmer with the greatest design exibility in choosing the

most appropriate storage-scheme for their application or architecture.

Nevertheless, many of the algorithms in TNT can be used on multiple linear algebra objects. This

works not only for double-precision, complex, and user-de�ned types, but also for linked-list, vector,

and map-based versions of sparse storage schemes. (Section 2 illustrates how this is done.) The

resulting code reduction is a tremendous simpli�cation over conventional schemes in which a separate

function or program must be written for each storage-structure/data-element combination.

Adding two sparse matrices is as straightforward as \A+B", even if their structures are not identical.

This is somewhat similar to the style used in Matlab, Mathematica, and other high-level scienti�c

environments. One can also de�ne new user-derived matrix types, such as a compressed-column matrix

of 4x4 blocks, or a banded matrix of multi-precision numbers. Elements of a sparse matrix can be

accessed as A(i,j), regardless of its underlying representation or matrix storage format. Converting

from one format to another can be as simple as \A=B".

� Applied and ComputationalMathematics Division, National Institute of Standards and Techology,

1

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−6

data structure length

ac
ce

ss
 ti

m
e

pe
r

el
em

en
t

Random access performance into STL containers, SPARC−20

vector<>

deque<>

map<>

Fig. 1. Random access performance of STL container classes on Sun SPARC 20, using g++

2.7.2 with -O optimization.

While elegant, such an approach could lead to ine�cient C++ implementations if it was the only

mechanism available to describe such algorithms. TNT provides various levels of the same algorithms,

from the elegant data-independent descriptions to the low-level computational kernels. For example,

optimized routines for the matrices of common data types (single-precision, double-precision, complex)

will link with the Level 3 Sparse Blas[8],[3], [14] e�ort. Such an o�ering of algorithms at various levels

of abstraction, provides a realistic tradeo� between program simplicity and performance, and is one of

the new features in this library.

2. Data structures in TNT. The vectors and matrices in TNT are built out of standard

components. ANSI C++ de�nes a basic toolkit of reusable components useful for general programming.

The Standard Template Library (STL) de�nes basic data structures such as queues, lists, sets, and

algorithms for using these in higher-level applications.

STL provides reusable container, iterators, algorithms, and function objects. For designing vector

and matrices for numeric programming, some of the most useful components are the vector<>, list<>,

and map<> containers (shown in Fig. 3), together with their respective algorithms. The vector<> is

similar to a C array (elements are stored contiguously in memory) except that one can \insert" an

element into the middle of it. The vector<> structure will grow if there is enough room, or reallocate

a larger memory segment and recopy itself into the new location. Element access time is constant, and

typically as e�cient as native C array indexing. Insertions and deletions are O(N) if in the middle, or

O(1) if at the end of the vector. There is no support for index bounds checking. The list<> container

is a doubly-linked list structure. Elements can be inserted or removed in constant time. Element

lookup is O(n). The map<> container is an associative-array structure with O(logn) element lookup

cost, O(1) and insertion/deletion cost.

Each container provides performance and e�ciency tradeo�s in indexing and inserting. These are

summarized by the following table:

iteration random insert

cost cost cost

map 8x O(log N) O(1)

vector 1x O(1) O(N)

list 5x O(N) O(1)

For these measurements we constructed containers of varying lengths and measured the time required

to perform random-accesses into these structures.

2.1. Dense vectors and matrices. TNT supports the vectors and matrices shown in Fig. 2.

The basic numerical Vector<> class is closely based on the STL generic vector<> class, but adds

2

Fig. 2. Linear algebra containers in TNT
� dense vectors

{ Vector<>

� dense matrices

{ C_Matrix<>

{ Fortran_Matrix<>

� native sparse vectors

{ sparse_vector<>

{ STLmap_sparse_vector<>

{ STLvec_sparse_vector<>

{ STLlist_sparse_vector<>

� Fortran-compatible sparse vector

{ Fortran_sparse_vector<>

� native compressed sparse matrices

{ Compressed_Sparse_Row_matrix<>

{ Compressed_Sparse_Col_matrix<>

{ Coordinate_Sparse_matrix<>

{ Compressed_diagonal_sparse_matrix<>

� Fortran-compatible sparse matrices

{ Fortran_Compressed_Sparse_Row_matrix<>

{ Fortran_Compressed_Sparse_Col_matrix<>

{ Fortran_Coordinate_Sparse_matrix<>

several features for numerical computing, such as optional index bound checking (turned on or o� at

compile time via TNT_BOUNDS_CHECK macro), and indexing via parentheses: x(i), as well as square

brackets: x[i].

The C_Matrix<> class mimics the behavior of C arrays, except that their sizes need not be speci�ed

at compile time. A C_Matrix<> object has for each row an independent vector. Thus, elements in each

row can be treated as being contiguous in memory, but adjacent rows need not be. Indexing into a

C_Matrix<> can be written as A[i][j] or A(i,j). The expression A[i] denotes the ith row and can

be used anywhere a vector can. The overhead in indexing a C_Matrix<> is no more than indexing a

native C array.

The Fortran_Matrix<> class mimics the behavior of a two-dimensional Fortran array. Elements are

column-oriented and contiguous in memory. For indexing e�ciency, an MxN Fortran_Matrix<> has an

extra pointer array of size N declared. Because all of the elements are contiguous, a Fortran_Matrix<>

layout may be seen as a one-dimensional container and hence an STL container. Thus, any STL

algorithm, such as for_each(), or max() may be used on objects of this class. The overhead in

indexing a Fortran_Matrix<> is typically the same as a native C array.

Although each STL container de�nes a ::size_type() indexing type, TNT vectors and matrices

utilize the same index type: Subscript. This makes it easier to write expressions involving matrices

and vectors.

2.2. Sparse Vectors. Sparse vectors are represented in TNT as generic containers of [value,index]

pairs. If ptr is a pointer to a sparse vector entry, then sp_value(*ptr) returns that element's index,

and sp_value(*ptr) returns that element's value. By keeping these two attributes together in a single

structure, we can treat these sparse vector container as generic STL containers which can utilize the

basic STL algorithms.

Figure 3 illustrates the TNT sparse vector data structures. The STLlist_sparse_vector<> class

uses a doubly-linked list of [value, index] pairs. This provides an O(1) insertion capability, but lacks

random-access. The STLvec_sparse_vector<> class is much more e�cient for traversing its elements,

but exhibits linear O(nz) complexity to �nd a speci�c element. The STLmap_sparse_vector<> class

uses an associate table (STL map) container to hold the elements sorted by index value. This reduces

the lookup complexity from O(nz) to O(lognz); however, the cost of iterating through its elements

3

34

25.127003sparse vector
element

STLmap_sparse_vector<>

STLlist_sparse_vector<>

STLvec_sparse_vector<>

Fig. 3. TNT data structures for sparse vectors.

can be up to eight times slower than an STL vector. Finally, a Fortran-compatible storage scheme,

Fortran_sparse_vector<>, utilizes two separate vectors: one for values, one for indices.

2.3. SparseMatrices. TNT supports several sparse matrix formats, mainly compressed schemes

built from sparse vector data objects described in the previous section. The Compressed_Sparse_Row_matrix<>

and Compressed_Sparse_Column_matrix<> are one-dimensional collections of the native TNT sparse

vectors.

To provide a simple illustration of how these matrices are used, we present an example which

initializes a matrix from an input �le, performs a matrix/vector multiply with it, and displays the

result. First, let us assume the input matrix is stored as a coordinate text �le format in which each

nonzero a(i,j) is sorted on a separate text line as \i j a" . The �rst line shows the size of the matrix

and the total number of nonzeros, e.g. a 5x5 sparse matrix with 4 nonzeros would look like

5 5 4

1 1 3.2

2 2 1.7

3 3 2.1

2 1 1.8

(Such a format loosely corresponds to the Matrix Market[2] exchange format, so it is not completely

arti�cial.) Given such an input �le, the code fragment to perform the initialization and computation

looks like:

cin >> M >> N >> nz; // read matrix size and nonzeros

Sparse_matrix A(M,N); // declare sparse matrix

for (Subscript k=0; k<nz; k++)

{

cin >> i >> j >> val; // read in values

A(i,j) = val; // fill sparse matrix

}

4

� Kernel algorithms

{ algebraic operators (A+B, A+=B, A*B, etc.)

{ y ! Ax matrix/matrix, matrix/vector products

{ Lx = y triangular solves

{ jjAjj various vector/matrix norms

� Direct methods

{ LU

{ QR

{ LLT

� Eigenvalues

� Iterative methods

{ Richardson iteration

{ Chebyshev Iteration

{ Conjugate Gradient (CG)

{ Conjugate Gradient Squared (CGS)

{ BiConjugate Gradient Stabilized (BiCGSTAB)

{ Generalized Minimum Residual (GMRES)

{ Quasi-minimal Residual (QMR) without lookahead

Fig. 4. Linear Algebra algorithms in TNT

Vector x(M, 1); // x = [1, 1, ...];

cout << A*x ; // perform mat/vec multiply

// and display results

The Sparse_matrix and Vector typenames can refer to any of the native TNT objects described

in Fig. 2, by declaring typename aliases such as

typedef STLvec_sparse_vector<double> Sparse_vector;

typedef Compressed_Sparse_Row_matrix<Sparse_vector> Sparse_matrix;

One could implement such as code fragment as a templated function in which the arguments are

returned, rather than printed out.

3. TNT algorithms.

3.1. Iterative Methods. TNT supports various direct and iterative methods, show in Fig. 3.

These range from low level BLAS-like operations, such as matrix/vector multiplication, to high-level

iterative methods, such preconditioned conjugate gradient methods. In this paper, we will focus on a

few sample codes to illustrate some of the basic principles of TNT algorithms.

The advanced interfaces in TNT employ split-phase computation (i.e. a separate initialization and

iteration section) for greater e�ciency and exibility. The e�ciency comes from the fact that often

one need not perform a termination test (usually some residual norm computation) at every iteration

{ particularly in the early stages of the iterations. By separating these two phases, one can forward

the iteration several steps at a time, without calling the termination section. This technique moves

the decision of when or how often to apply termination test out of the library and into the calling

application, where it belongs.

Integrating the user-de�ned preconditioner and matrix/vector multiply routine with the internal

iteration algorithms also poses challenges, particularly in strongly-typed languages like ANSI C and

C++. Often these functions are provided as C or Fortran routines: f(x, t1, t2, ...) and spec-

ifying such an interface in a general library routine of an iterative methods package is impractical.

Nevertheless, C++ function objects can provide a type-safe solution, without unnecessary copying or

global variables.

5

The split-phase approach treats the iterative method as a conventional C++ class. The constructor

is used to set the internal variables in the iterative algorithm, while the ::iterate() method is used

to advance the algorithm.

Consider a preconditioned conjugate-gradient example. The basic iteration code looks like:

template <class Matrix, class Vector, class Precond>

void CG_method<Matrix, Vector, Precond>::iterate()

{

z = M(r);

if (num_iters == 0) p=z;

else

{ beta = rho / dot_product(p,q);

p = beta * p + z;

}

q = A*p;

alpha = rho / dot_product(p,q);

x += alpha * p;

r -= alpha * q;

rho1 = rho;

}

Notice that no mention is made of the preconditioner, nor of the speci�c matrix type (it could be

sparse, dense, or distributed), nor the element types (single or double precision). Furthermore, in the

case where the matrix is sparse, no mention is made of the particular storage format.

The constructor for the method requires the initial vector, the resulting solution, and the matrix

and preconditioners as function objects. (Neither the matrix nor the preconditioner need be explicitly

formed.) The constructor also initializes the internal variables:

template <class Matrix, class Vector, class Precond>

CG_method<Matrix, Vector, Precond>::CG_method(const Matrix &A,

const Vector x0, const Vector &b, const Precond &M)

{

x = x0;

r = A*x - b;

alpha = beta = rho = rho_1 = 0;

num_iters = 0;

}

In this case, we have described a completely generic algorithmic description of the conjugate gradient

algorithm which closely matches its mathematical description. The kernel operations, such as the A*x

and dot_product() are then instantiated with speci�c data objects to determine which version they

will link with this. This mechanism is described in the next section.

3.2. Computational kernels. At some point in the description of high-level algorithms, such

as the iterative methods described above, data-speci�c versions of computational kernels must be

instantiated to produce executable code. For example, a conjugate gradient algorithm instantiated

with a sparse matrix needs to �nd the appropriate matrix-vector multiply routine to compute A*x in

its inner loops. This is where the real work gets done.

Each subclass of matrices (e.g. sparse, dense, distributed dense, etc.) will have its own particular

implementation of A*x. Although it is impossible to have one generic algorithm for each case, one

6

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14
sparse * dense vector dot product

sparse vector length

M
flo

ps

vector<>

list<>

map<>

deque<>

Sun SPARC 20

array[]

Fig. 5. Dot product performance of various TNT sparse vector representations.

can group similar TNT data structures together and exploit commonality to reduce the number of

functions actually de�ned.

For example, the algorithm to perform a dot product of a a sparse vector with a dense vector:

template <class SparseInputIterator, class RandomAccessIterator, class T>

inline T spvec_dot_product(SparseInputIterator p, SparseInputIterator last,

RandomAccessIterator x, T init)

{

for (; p!=last; p++)

init = init + sp_value(*p) * x[sp_index(*p)];

return init;

}

will work with all three types of native TNT sparse vectors (Fig. 2. In each case, the algorithm

walks through the nonzero elements in the sparse vector and uses each element's index (sp_index())

to extract the corresponding value from the dense vector x. Actually, x need not be a vector, but any

container that support random access iterators. Figure 5 illustrates how the various performance rates

for dot products between sparse and dense vectors compare.

The following code illustrates how a matrix/vector multiply algorithm (y A � x + y) can be

written for generic compressed-row sparse matrices:

template <class CompressedSparseRowIterator, class RandomAccessIterator>

void inline csr_mat_vec_mult(CompressedSparseRowIterator p,

CompressedSparseRowIterator last, RandomAccessIterator x,

RandomAccessIterator y)

{

while (p!=last)

{

*y = spvec_dot_product((*p).begin(), (*p).end(), x, *y);

p++;

y++;

}

7

}

This algorithm can be used by any sparse matrix storage scheme which maintains its elements as

a series of sparse vectors, one for each row. This includes not only the TNT Compressed_Sparse_Row

container adaptor, but user-de�ned implementations as well. The only requirement is that the sparse

vector container used must support iterators to move through its elements, as well the sp_index()

and sp_value() access functions.

3.3. Conventional Sparse BLAS. For the common cases where the elements of matrix and

vector elements are single or double precision numbers, TNT can link with optimized routines for the

low-level numerical operations. For dense matrices, one widely used library is the Basic Linear Algebra

Suprograms (BLAS), which has been implemented on a wide array of computer architectures. The

BLAS library supports matrix/matrix multiplication routines, together with triangular solves. Similar

kernels for sparse matrices are currently being developed. One current implementation, the NIST

Sparse BLAS [14] library provides the following operations:

� sparse matrix products,

C � A B + �C

C � AT B + �C

� solution of triangular systems,

C �DL A
�1 DRB + �C

C �DL A
�T DRB + �C

where A is sparse matrix, B and C are dense matrices/vectors, and DL and DR are diagonal matrices.

This version of the NIST Sparse BLAS supports the following sparse formats: compressed sparse row

(CSR), compressed sparse column (CSC), coordinate (COO), block sparse row (BSR), block sparse

column (BSC), block coordinate (BCO) and variable block row (VBR). Symmetric and skew-symmetric

versions are also supported.

The routines are written in ANSI C and are callable from Fortran and C through the interface

proposed in the Sparse BLAS Toolkit[3] Also see the companion paper [8]. Performance results for

various computer architectures are shown in Fig. 6.

4. Parallelism. Shared-memory parallelism in TNT can be expressed in three ways: (1) using

the shared-memory pragmas described in High Performance C++ (HPC++) [9], (2) replacing the con-

ventional STL header �les with parallel versions, and (3) using conventional thread-based parallelism

in supporting libraries, such as the sparse and dense BLAS.

Each of these approaches has its strengths and weaknesses. For example, the HPC++ pragmas are

some of the most powerful techniques, but the HPC++ design speci�cation is still evolving and there

is no compiler support as of this writing. A parallel implementation of the STL, on the other hand, can

be quite challenging, particularly for containers that do not support random-access iterators. Finally,

a thread-based solution for non-templated functions is possible within ANSI C++, using existing

operating system interfaces, such as POSIX threads[16], or Windows NT threads[11].

4.1. HPC++ pragmas. The easiest and most powerful approach to express parallelism in TNT

(and in fact most C++ programs) is to utilize parallel extensions speci�ed by the HPC++ working

group. Although this is an ongoing e�ort, we expect that compilers may support such constructs in

the future, and include them here to illustrate how such an approach would work with TNT.

The use of pragmas in HPC++ is similar to the directives in High Performance Fortran (HPF).

The basic idea is to annotate a conventional sequential program, identifying possible parallel loops.

This annotation is in the form of comments, or pragmas in C++, which can be safely ignored by

a conventional ANSI C++ compiler. Thus, the resulting code is still portable and can be run on

sequential platforms without modi�cation.

8

x VBR toolkit

x VBR lite

 BSR toolkit

 BSR lite

o CSR toolkit

o CSR lite

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Blocksize

M
flo

ps

Matvec performance on 200MHzPentiumPro

west0156 with 10 right−hand−side(s)

Fig. 6. Performance of NIST Sparse BLAS matrix/multiply operation based on block-structure

matrix with various storage schemes, on a 200 MHz Intel Pentium Pro (P6) workstation.

HPC++ identi�es well-behaved parallel loops via the HPC_INDEPENDENT pragma. For example, a

code segment to multiply a sparse vector by a scalar in parallel, can be written as

template <class SparseVec, class Scalar>

SparseVec& spvec_mult_scalar_update(const SparseVec &A, const Scalar& a)

{

#pragma HPC_INDEPENDENT

for (SparseVec::iterator p=A.begin(); p != A.end() ; p++)

sp_val(*p) *= a;

return A;

}

If the iterator is a random-access type, an HPC++ compiler can transform this template declaration

from iterator-based to index based. In this case, the values of the induction variable can be broken into

separate threads. For containers without random-access, the situation becomes more di�cult. (See

section 4.2.)

For loops involving reduction variables, a similar HPC_REDUCE pragma may be used, as in

template <class SparseVec, class Vector, class scalar>

inline scalar spvec_dot_product(const SparseVec &A, const Vector &B,

const scalar &prev_sum)

{ scalar sum = prev_sum;

for (SparseVec::const_iterator p=A.begin(); p!=A.end(); p++)

#pragma HPC_REDUCE

sum += sp_value(*p) * B[sp_index(*p)];

return sum;

}

to compute the dot product of sparse vector and a dense vector. The syntax of this pragma can also

specify PRIVATE variables, as well as di�erent reduction operations, such as min, max, \+", \-", *",

9

and so on.

The complete speci�cation for both of these pragmas is much more complex. The HPC_INDEPENDENT

directive is designed to support private variable lists, and ON_HOME(mapped_variable) extensions for

distributed-memory programming. See the HPC++ Working Group White Paper[9] for further details.

4.2. Parallel versions of STL. The simplest approach is to apply HPC++ loop pragmas to

the STL algorithms, creating parallel variations of for_each(), count(), and so on, as described in

[10].

Aside from this automatic compiler parallelization, another solution is to implement a modi�ed

version of STL which has been parallelized with an existing thread interface, such as Windows NT or

POSIX threads. This is very attractive to the application programmer, since \parallelizing" a code

would involve only recompiling (with a di�erent set of STL header �les) and re-linking. Furthermore,

it could be accomplished with unmodi�ed ANSI C++ compilers and does not rely on experimental

languages. (Operating systems that do not support threads would just see the conventional STL.) The

assumption here, of course, is that the parallelism would be limited to sections of code using STL.

However, there is still a basic challenge with this approach: the algorithms in STL are iterator-

based. That is, the basic scheme when traversing containers is to move from one element to the next.

Most of the STL containers, such as list<> and set<>, do not support random-access | the only

way to get to the i-th element is to have visited the (i-1)th element. This makes it very di�cult,

without detailed compiler analysis, to break up the iteration space into separate threads. Clearly, if

one must �rst traverse the complete list sequentially to partition the list, the parallel bene�t is seriously

degraded.

One solution is to construct a modi�ed STL container that maintains a list of markers that partitions

the list into equal-sized chunks. However, this has its own problems.

First, since the STL container needs a variant implementation, one cannot utilize shared-memory

parallelization \on the y". That is, one cannot decide at a given point in the computation that a

given container will be processed in parallel. Instead one has to decide apriori which objects will be

parallel | often di�cult to do when developing library code.

Second, it requires maintenance for the markers | every time an element is inserted or deleted one

needs to re-adjust these markers so that the resulting partitions are \load-balanced". This can greatly

increase the cost of insert/delete operations to the point where the increased overhead is greater than

the bene�t from processing the list in parallel. (This is not the case if the amount of work being done

relative to the indexing cost is large.)

Third, the number of markers need to be determined at time of object construction, thus �xing the

number of threads during the lifetime of the object.

4.3. OS threads and function pointers in ANSI C++. One practical solution for SMP

parallelization with ANSI C++ is the use of Windows NT or POSIX threads. The former has enjoyed

widespread interest, since multiprocessor workstations and servers based on Pentium Pro and Alpha

processors are becoming popular. Dual and four-processor Pentium Pro motherboards, for example, are

being used in workstations for CAD, image processing, visualization, and scienti�c computing. These

systems o�er high-end performance for less than the price of a conventional workstation. Furthermore

many of the MPP systems today, have as their \nodes" 4-node multiprocessor systems.

There is, however, a problem with shared-memory threads and ANSI C++: the function pointers

required for the thread interfaces are incompatible with templated and overloaded C++ functions.

This is because it is hard to extract the address information of these types of functions.

Nearly all existing interface utilize function pointers in their thread-creation routines; for example,

Windows NT uses the following declaration:

BOOL CreateThread(LPSECURITY_ATTRIBUTES secuirty_struct,

DWORD stack_size,

LPTHREAD_START_ROUTINE f,

LPVOID arg,

DWORD flag,

LPWORD threadID);

10

while POSIX threads utilize a similar declaration:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*entry)(void), void *arg);

A typical POSIX call would look like

void f(const arg_struct *A);

arg_struct Args;

RTN = pthread_create(&TID, NULL, f, &Args);

The problem with overloaded functions in C++ is that there is no convenient way to specify a particular

instantiation. For example, the following will not compile.

int foo(int);

int foo(double);

int foo(complex);

int foo(char);

double Arg = 3.0;

pthread_create(&TID, NULL, foo, &Arg); // which version of foo?

There is no mechanism to denote that we wish to spawn the foo(double) version , even though a

speci�c double type is included in the argument list. The pthread_create() prototype essentially

throws all type information away. Similarly, there are problems with templated functions because of

their \instantiation on demand" characteristics:

template <class T>

int foo(const T& t){ ... };

double Arg= 3.0; // not possible to

pthread_create(&TID, NULL, foo, &Arg); // to instantiate foo(double);

4.4. Parallelism via BLAS kernels. Due to the problems with integrating threads with tem-

plated and overloaded functions, an alternative is to use this approach on conventional functions. A

good candidate for such functions in TNT are the linear algebra kernels for sparse and dense matrices

discussed in section 3.2.

For example, with matrix/vector multiply of a compressed-row sparse matrix with a dense vector,

one can process group of rows in parallel. The basic operation is a vector dot product with a row of

A with x. This is shown in Fig. 7. Each thread works on a panel of contiguous rows in A, with a

similar partitioning of the result vector y. The x vector is shared (read-only) by all threads and may

be e�ectively cached on a multi-processor system.

For compressed-column matrices, a di�erent parallel algorithm is used. In this case, each thread

works on a panel of consecutive columns of A, as shown in Fig. 8. The basic algorithm is a scalar

vector update (saxpy) operation. The variable x is still shared by all threads and can also be e�fectively

cached. The values of y, however, need to be reduced over multiple threads, so some synchronization

is needed to update these sums.

5. Conclusions. In the previous sections we have seen how resuable data structures and algo-

rithms can be used in numerical linear algebra libraries. Much of the work presented here has borrowed

ideas and has tried to be consistent with the paradigm of the Standard Template Library.

11

P1
P2

P3

P4

P1
P2

P3

P4

(shared)

A x y

Fig. 7. Parallel SMP algorithm for matrix/vector multiplication with compressed row matri-

ces. The x vector is shared (read-only) by all threads and can e�ectively cached in a multipro-

cessor system.

P1
P2

P3

P4

P1

P2

P3

P4

A x y

(shared) reduced

Fig. 8. Parallel SMP algorithm for matrix/vector multiplication of compressed column ma-

trices. The x vector is shared (read-only) by all threads and can e�ectively cached in a multi-

processor system. A reduction over y is needed.

12

We have shown how one can write high-level numerical algorithms yet still generate executables

with competitive performance to conventional C or Fortran libraries. The techniques in TNT utilize

compile-time polymorphism in the form of C++ templates and overloaded functions. Thus, no excess

run-time overhead is incurred due to virtual function lookup.

Although such an approach provides a practical platform for developing higher-level resuable compo-

nents, the scheme is certainly not perfect. It does have some drawbacks. For instance, STL leads to code

bloat since some linkers are not smart enough to fuse redundant function de�nitions when combining

several object �les. Programming with iterators can sometimes lead to di�cult-to-track bugs. For ex-

ample the code fragment to traverse an STL container \for (p=a.begin(); p!=b.begin(); p++)..."

illustrates a small typo which can overwrite memory (b.begin() should be a.begin()). Furthermore

STL does not deal with const correctness, and the STL template mechanism to specialize on templated

function args is very fragile. (A good example of this are iterator tags).

For SMP parallel computing there are further challenges. Although portable thread-based are

attractive, there are di�culties in using function-pointer OS interfaces with templated and overloaded

functions in ANSI C++. The language extensions in HPC++ allow the simple pragmas to identify

parallelizable loops. Such an approach can be used to annotate the algorithms in STL to produce a

\generic" SMP library. HPC++ also de�nes an interface for a speci�c SMP version of STL; however

variations of the basic STL algorithms, such as par_for_each() require recoding of application sources

to utilize parallel versions. Thus it is as simple as recompiling and linking with a di�erent ag option

or library.

Another challenge for a parallel version of STL is that most of the non-random iterator based

algorithms cannot be e�ectively parallelized due to their data dependencies.

To take advantage of small SMP platforms (from 1 to 8 processors), a parallel BLAS approach

may prove most practical. By employing standard thread interfaces such as Windows NT and POSIX

threads, we can implement such libraries and integrate them with application codes.

As mentioned in the introduction, this project is under constant development; this paper provides a

look at the work in progress. Users are encouraged to visit the TNT web site, http://math.nist.gov/tnt,

for latest development news and information.

REFERENCES

[1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.

Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for

Iterative Methods, SIAM Press, 1994.

[2] R. Boisvert, R. Pozo, K. Remington, \Matrix Market User's Guide",

http://math.nist.gov/MatrixMarket.

[3] S. Carney, M. Heroux, G. Li, R. Pozo, K. Remington, K. Wu, \A Revised Proposal for a Sparse

BLAS Tookit", http://www.cray.com/PUBLIC/APPS/SERVICES/ALGORITHMS/spblastk.ps

[4] J. Dongarra, J. Du Croz, I. S. Du�, S. Hammarling, \A set of level 3 Basic Linear Algebra

Subprograms," ACM Trans. Math. Soft., Vol. 16, 1990, pp. 1-17.

[5] J. Dongarra, A. Lumsdaine, R. Pozo, K. Remington, IML++: Iterative Methods Library

Reference Guide, NISTIR 5860, National Institute of Standards and Technology,

http://math.nist.gov/iml++, June 1996.

[6] J. Dongarra, R. Pozo, D. Walker, \LAPACK++: A Design Overview of Object-Oriented

Extensions for High Performance Linear Algebra," Proceedings of Supercomputing '93, IEEE

Press, 1993, pp. 162-171.

[7] I. Du�, R. Grimes, J. Lewis, \Sparse Matrix Test Problems," ACM Trans. Math. Soft., Vol. 15,

1989, pp. 1-14.

[8] I. Du�, M. Marrone, G. Radicati, A Proposal for User Level Sparse BLAS, CERFACS Technical

Report TR/PA/92/85, 1992.

[9] HPC++ Working Group, HPC++ Working Group White Paper,

http://www.extreme.indiana.edu/hpc%2b%2b/docs/hpc++wp/hpc++wp.html.

13

[10] E. Johnson, P. Beckman, D. Gannon, HPC++: An experiment with the Parallel Standard

Template Library, http://www.extreme.indiana.edu/hpc%2b%2b/docs/pstl/pstl.html

[11] T. Q. Pham, P. K. Garg, Multithreaded Programming with Windows NT, Prentice-Hall, 1996.

[12] R. Pozo, MV++ User's Manual, NISTIR 5859, National Institute of Standards and Technology,

http://math.nist.gov/mv++, June 1996.

[13] R. Pozo, K. Remington, A. Lumsdaine, SparseLib++: Sparse Matrix Class Library Reference

Guide, NISTIR 5861, National Institute of Standards and Technology,

http://math.nist.gov/sparselib++, June 1996.

[14] K. Remington, R. Pozo, \The NIST Sparse BLAS User's Guide",

http://math.nist.gov/spblas.

[15] A. Stepanov, M. Lee, The Standard Template Library, Technical Report HPL-95-11,

Hewlet-Packard Laboratories, January 1995.

[16] Sun Microsystems, Inc., POSIX. 1c/D10 Summary, 1995.

14

